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Abstract

We identify the precise relationship between the five-parameter τ (2)-family
in the N-state chiral Potts model and XXZ chains with Uq(sl2)-cyclic
representation. By studying the Yang–Baxter relation of the six-vertex model,
we discover a one-parameter family of L-operators in terms of the quantum
group Uq(sl2). When N is odd, the N-state τ (2)-model can be regarded as the
XXZ chain of Uq(sl2) cyclic representations with qN = 1. The symmetry
algebra of the τ (2)-model is described by the quantum affine algebra Uq(ŝl2)

via the canonical representation. In general, for an arbitrary N, we show that
the XXZ chain with a Uq(sl2)-cyclic representation for q2N = 1 is equivalent
to two copies of the same N-state τ (2)-model.

PACS numbers: 05.50.+q, 02.20.Uw, 75.10Jm
Mathematics Subject Classification: 17B37, 17B80, 82B20

1. Introduction

In the study of the N-state chiral Potts model (CPM), Bazhanov and Stroganov [12] discovered
a five-parameter family of L-operators of the τ (2)-model in the six-vertex model with a
particular field (see [9] page 3), i.e. the solution of Yang–Baxter (YB) equation for the
asymmetric six-vertex R-matrix, (see (2.1) and (2.2) in this paper). The chiral Potts transfer
matrix can be constructed as the Baxter’s Q-operator of the τ (2)-model [11, 29]. By the
functional relations between the fusion matrices of the τ (2)-model and the chiral Potts transfer
matrix, one can compute the eigenvalue spectrum of the (homogeneous) superintegrable CPM
[1, 6, 7], where the τ (2)-degeneracy occurs with the symmetry algebra described by Onsager
algebra [24]. Furthermore, one can discuss the eigenvalue spectrum and calculate the order
parameter in the CPM through the functional-relation method [4, 5, 10, 22, 30]. Though much
progress has been made on issues related to the eigenvalues, we still lack enough information
at present about the eigenvectors in the CPM. Consequently, some important problems
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which require knowledge of eigenvectors, such as the calculation of correlation functions,
remain unsolved in the theory. On the other hand, the (‘zero-field’) six-vertex model ([8]
section 3) with the symmetric R-matrix has been a well-studied theory with profound
knowledge known in the literature about their eigenvalues and eigenvectors. The understanding
of the structure was further extended to XXZ models of higher spin [20], or more generally the
model associated with a representation of the quantum group Uq(sl2). When q is a Nth root
of unity, it was shown in [15–17, 23, 25, 27] that the degeneracy of XXZ models occurs with
the extra sl2-loop-algebra symmetry induced from the structure of the quantum affine algebra
Uq(ŝl2). For odd N, as a special member of a one-parameter Uq(sl2)-cyclic representation,
the spin-(N − 1)/2 XXZ chain can be identified with the superintegrable N-state τ (2)-model
[28]. Hence the superintegrable τ (2)-model also carries the sl2-loop-algebra symmetry for
the degeneracy (of certain sectors), compatible with the Onsager-algebra symmetry inherited
from the chiral Potts transfer matrix [28]. The interrelation of these two symmetries can lead
to some useful information about eigenvectors of the superintegrable model (see, e.g. [2, 3]).
The aim of this paper is to extend the equivalent relationship between the N-state τ (2)-model
and the XXZ model with the Uq(sl2)-cyclic representation to the whole five-parameter τ (2)-
family found in [12] for any N. Through the YB relation in the six-vertex model, we find a
characterization of a quantum group Uq(sl2) through a one-parameter L-operators of the YB
solution (see (2.5), (2.6) in the paper). When q is a root of unity, the algebra Uq(sl2) possesses
a three-parameter family of cyclic representation. Together with the rescaling of the spectral
parameter, XXZ chains with the Uq(sl2)-cyclic representation also carry a five-parameter
L-operator. By extending the argument in [28], we show the identification of τ (2)-models and
the XXZ chains with the Uq(sl2)-cyclic representation. Note that such a precise connection
between the τ (2)-family in the CPM and the XXZ-family with the symmetric R-matrix seems
not to have appeared in the literature before, to the best of the author’s knowledge, even in the
odd N case except a one-parameter family of τ (2)-models in [28]. We hope an identification
of these models will help to provide some useful clues to understand the eigenvectors of the
CPM in certain special cases.

This paper is organized as follows. In section 2, we recall the definition of the τ (2)-model,
quantum group Uq(sl2), and the quantum affine algebra Uq(ŝl2). In section 3, we first describe
the three-parameter family of cyclic representations of Uq(sl2) for a root of unity q. The case
of qN = 1 for odd N is discussed in subsection 3.1 where the τ (2)-model is identified with the
XXZ chain with cyclic representation of Uq(sl2), hence the quantum space carries a canonical
representation of the quantum affine algebra Uq(ŝl2). In subsection 3.2, we study the N-state
τ (2)-model for an arbitrary N. We show that a XXZ chain of Uq(sl2)-cyclic representation
with q2N = 1 is equivalent to two copies of the same N-state τ (2)-model. Finally we close in
section 4 with a brief concluding remark.

Notation: we use standard notations. For a positive integer N greater than one, CN denotes
the vector space of N-cyclic vectors with the canonical base |n〉, n ∈ ZN(:= Z/NZ). We fix
the Nth root of unity ω = e

2π i
N , and X,Z, the Weyl CN -operators

X|n〉 = |n + 1〉, Z|n〉 = ωn|n〉 (n ∈ ZN),

which satisfy XN = ZN = 1 and the Weyl relation: XZ = ω−1ZX.

2. The N-state τ (2)-model and quantum group Uq(sl2)

The N-state τ (2)-model [11, 12, 30] (also called the Baxter–Bazhanov–Stroganov model [19])
is the five-parameter family of L-operators of C2-auxiliary, CN -quantum space with entries
expressed by Weyl operators X,Z
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L(t) =

⎛⎜⎜⎝ 1 − t
c

b′b
X

(
1

b
− ω

ac

b′b
X

)
Z

−t

(
1

b′ − a′c
b′b

X

)
Z−1 −t

1

b′b
+ ω

a′ac

b′b
X

⎞⎟⎟⎠ , (2.1)

where t is the spectral variable, and a, b, a′, b′, c are nonzero complex parameters. It is known
that the L-operator (2.1) satisfies the YB equation

R(t/t ′)
(
L(t)

⊗
aux

1
)(

1
⊗
aux

L(t ′)
) = (

1
⊗
aux

L(t ′)
)(
L(t)

⊗
aux

1
)
R(t/t ′)

for the asymmetry six-vertex R-matrix

R(t) =

⎛⎜⎜⎝
tω − 1 0 0 0

0 t − 1 ω − 1 0
0 t (ω − 1) (t − 1)ω 0
0 0 0 tω − 1

⎞⎟⎟⎠ . (2.2)

The monodromy matrix,
⊗L

�=1 L�(t) where L�(t) = L(t) at site �, again satisfies the above
YB relation, whose ω-twisted trace defines the τ (2)-matrix

τ (2)(t) = trC2

L⊗
�=1

L�(ωt), (2.3)

commuting with the spin-shift operator X
(
: = ∏

� X�

)
.

The quantum group Uq(sl2) is the associated C-algebra generated by K
±1
2 , e± with the

relations K
1
2 K

−1
2 = K

−1
2 K

1
2 = 1 and

K
1
2 e±K

−1
2 = q±1e±, [e+, e−] = K − K−1

q − q−1
. (2.4)

Then the two-by-two matrix with Uq(sl2)-entries defines a one-parameter family of L-operators

L(s) =
(

ρ−1sK
−1
2 − s−1K

1
2 (q − q−1)e−

(q − q−1)e+ sK
1
2 − ρs−1K

−1
2

)
, ρ �= 0 ∈ C, (2.5)

which satisfy the YB equation

R6v(s/s
′)(L(s)

⊗
aux

1)
(
1
⊗
aux

L(s ′)
) = (

1
⊗
aux

L(s ′)
)(
L(s)

⊗
aux

1
)
R6v(s/s

′). (2.6)

for the six-vertex (symmetric) R-matrix [18, 21]:

R6v(s) =

⎛⎜⎜⎝
s−1q − sq−1 0 0 0

0 s−1 − s q − q−1 0
0 q − q−1 s−1 − s 0
0 0 0 s−1q − sq−1

⎞⎟⎟⎠ .

Indeed, the YB relation (2.6) for L in (2.5) is the necessary and sufficient condition of the
constraint (2.4) in the definition of quantum group Uq(sl2). Using the local L-operator (2.5),

one constructs the monodromy matrix
⊗L

�=1 L�(s) with entries in
( L⊗

Uq(sl2)
)
(s),

L⊗
�=1

L�(s) =
(
AL(s) BL(s)

CL(s) DL(s)

)
3
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again satisfying (2.6). The structure of the quantum affine algebra Uq(ŝl2) is described by the
leading and lowest terms of the above entries in the monodromy matrix,

A+ = lims→∞(ρ−1s)−LAL(s), A− = lims→0(−s)LAL(s),

B± = lims±1→∞(±s)∓(L−1) BL(s)

q − q−1
, C± = lims±1→∞(±s)∓(L−1) CL(s)

q − q−1
,

D+ = lims→∞ s−LDL(s), D− = lims→0(−ρ−1s)LDL(s).

One has A+ = A−1
− , A∓ = D±. Denote T − = B+, S

− = B− and S+ = C+, T
+ = C−. The

operators

k−1
0 = k1 = A2

− = D2
+, e1 = S+, f1 = S−, e0 = T −, f0 = T +

generate the quantum affine algebra Uq(ŝl2) with the Hopf-algebra structure

	(ki) = ki ⊗ ki, i = 0, 1,

	(e1) = k1 ⊗ e1 + ρ−1e1 ⊗ k0, 	(f1) = k1 ⊗ f1 + ρf1 ⊗ k0,

	(e0) = ρ−1k0 ⊗ e0 + e0 ⊗ k1, 	(f0) = ρk0 ⊗ f0 + f0 ⊗ k1.

Indeed, the explicit expression of generators of Uq(ŝl2) is

A− = K
1
2 ⊗ · · · ⊗ K

1
2 , A+ = K

−1
2 ⊗ · · · ⊗ K

−1
2 ,

S± =
L∑

i=1

K
1
2 ⊗ · · · ⊗ K

1
2︸ ︷︷ ︸

i−1

⊗e± ⊗ K
−1
2 ⊗ · · · ⊗ K

−1
2︸ ︷︷ ︸

L−i

ρ∓(L−i),

T ± =
L∑

i=1

ρ±(i−1) K
−1
2 ⊗ · · · ⊗ K

−1
2︸ ︷︷ ︸

i−1

⊗e± ⊗ K
1
2 ⊗ · · · ⊗ K

1
2︸ ︷︷ ︸

L−i

.

(2.7)

Note that (2.6) is still valid when changing the variable s by αs for a nonzero complex α. Given
a finite-dimensional representation σ : Uq(sl2) −→ End(Cd), the L-operator of C2-auxiliary
and Cd -quantum space, L(s) = σ(L(αs)), satisfies the YB relation (2.6). In particular, by
setting the parameter ρ = 1 in (2.5), with α = q

d−2
2 and σ the spin- d−1

2 (highest-weight)
representation of Uq(sl2) on Cd = ⊕d−1

k=0C ek

K
1
2 (ek) = q

d−1−2k
2 ek, e+(ek) = [k] ek−1, e−(ek) = [d − 1 − k] ek+1,

where [n] = qn−q−n

q−q−1 and e+(e0) = e−(ed−1) = 0, one obtains the well-known L-operator of

the XXZ chain of spin- d−1
2 (see, e.g. [20, 26, 27] and references therein).

3. The equivalence of τ (2)-models and XXZ chains with cyclic representation of Uq(sl2)

In this section, we consider the case when q is a root of unity. For a Nth root of unity q, there
exists a three-parameter family of cyclic representation σφ,φ′,ε of Uq(sl2), labeled by nonzero
complex numbers φ, φ′ and ε, which acts on cyclic CN -vectors by

K
1
2 |n〉 = q−n+ φ′−φ

2 |n〉, e+|n〉 = qε qφ+n − q−φ−n

q − q−1
|n − 1〉,

e−|n〉 = q−ε qφ′−n − q−φ′+n

q − q−1
|n + 1〉,

(3.1)

(see, e.g. [13, 14]). The L-operator,

L(s) = σφ,φ′,εL(s) (3.2)

4
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gives rise to the transfer matrix of the XXZ chain with the Uq(sl2)-cyclic representation σφ,φ′,ε,

T (s) = (⊗σφ,φ′,ε)

(
trC2

L⊗
�=1

L�(s)

)
, (3.3)

which commutes with K
1
2
(
: = ⊗�K

1
2
� , the product of local K

1
2 -operators

)
.

3.1. The identification of the N-state τ (2)-model and the XXZ chain of Uq(sl2)-cyclic
representation with qN = 1 for odd N

In the subsection, we consider the case N odd, and write N = 2M + 1. Let q be the primitive
Nth root-of-unity with q−2 = ω. Then one can express the cyclic representation (3.1) in terms
of the Weyl operators X,Z

K
1
2 = q

φ′−φ

2 Z
1
2 , e+ = qε

(
qφ+1Z− 1

2 − q−φ−1Z
1
2
)
X−1

q − q−1
,

e− = q−ε

(
qφ′+1Z

1
2 − q−φ′−1Z− 1

2
)
X

q − q−1
,

hence follow the expression:

K−1 = qφ−φ′
Z−1, K

−1
2 e+ = −q

−φ−φ′
2 +ε−1 (1 − q2φ+2Z−1)X−1

q − q−1
,

K
−1
2 e− = q

φ+φ′
2 −ε+1 (1 − q−2φ′−2Z−1)X

q − q−1
.

(3.4)

Using the Fourier basis |̂n〉 = 1
N

∑
j∈ZN

ω−nj |j 〉, one may convert the Weyl operator (Z−1, X)

to (X,Z) (
Z−1

X |̂0〉, . . . , Z−1

X
̂|N − 1〉) = (|̂0〉, . . . , ̂|N − 1〉)X

Z, (3.5)

hence represent K−1,K
−1
2 e± in (3.4) by

K−1 = qφ−φ′
X, K

−1
2 e+ = −q

−φ−φ′
2 +ε−1 (1 − q2φ+2X)Z−1

q − q−1
,

K
−1
2 e− = q

φ+φ′
2 −ε+1 (1 − q−2φ′−2X)Z

q − q−1
.

By the above expression and introducing the spectral variable t = λ−1s2 for a nonzero complex
λ, the modified L-operator of (3.2), −sK

−1
2 L(s), is gauge equivalent to(

1 − tλρ−1qφ−φ′
X q−ε(1 − q−2φ′−2X)Z

−tλqε(1 − q2φ+2X)Z−1 −tλ + ρqφ−φ′
X

)
,

which is the same as the L-operator (2.1) of the τ (2)-model by the following identification of
parameters:

a = λ−1ρq−φ−φ′−ε, a′ = ρqφ+φ′+ε+2, b = qε, b′ = λ−1q−ε, c = ρ−1qφ−φ′
,

equivalently qε = b, q2φ = ωa′c
b

, q2φ′ = b′

ac
, ρ2 = ωaa′

bb′ , λ = 1

bb′ .
(3.6)

This implies the transfer matrix (3.3) of the XXZ chain is equivalent to the τ (2)-transfer matrix
(2.3). Note that the product of the local operator K−1’s of the XXZ chain is now corresponding
to a scalar multiple of the spin-shift operator X, which commutes with the τ (2)-matrix. The

5
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representations with ε = 0, φ = φ′ in (3.1) form the one-parameter cyclic representation of
Uq(sl2) discussed in [28, section 4]. In particular, the case φ = φ′ = M is the spin-N−1

2
highest-weight representation of Uq(sl2).

It is known that the degeneracy of the τ (2)-model in the CPM occurs in the alternating
superintegrable case (see, [30] section 4.3), where the τ (2)-model is characterized by the
L-operator (2.1) with the parameter

a = ωm b′, a′ = ωm′
b, c = ωn, (m, m′, n ∈ Z),

or equivalently, with the representation parameters φ, φ′, ε and ρ, λ in (3.6) given by

φ = −(m′ + n + 1), φ′ = m + n, qε = b, ρ = q−(1+m+m′), λ = 1

bb′ .

(3.7)

In this case, there exist the normalized Nth power of S±, T ± in (2.7), S±(N) = S±N

[N]! , T
±(N) =

S±N

[N]! . As φ in (3.7) is an integer, by the algebraic-Bethe-ansatz technique, one can show

the degeneracy of the alternating superintegrable τ (2)-model (for certain sectors) possesses
the symmetry algebra generated by S±(N), T ±(N), which can be identified with the sl2-loop
algebra under certain constraints between the integers m, m′ and n, as in the discussion of the
homogeneous superintegrable case in [15, 23, 27]. However, the precise structure about the
symmetry algebra for arbitrary m, m′, n remains unknown to be identified.

3.2. The XXZ chain of the Uq(sl2)-cyclic representation with q2N = 1 as two copies of the
N-state τ (2)-model for an arbitrary N

By extending the argument of the previous subsection, we now identify the N-state τ (2)-model
with a XXZ chain for an arbitrary N. Let q be a primitive (2N)-th root of unity with q−2 = ω,
hence qN = −1. Consider the three-parameter family of Uq(sl2)-cyclic representations σφ,φ′,ε
in (3.1) on the vector space V of 2N -cyclic vectors

V :=
⊕

{C|n〉′|n ∈ Z2N }.
Denote the vectors in V

|n〉 := |n〉′ + |n + N〉′, (n ∈ Z2N),

|n〉− := |n〉′ − |n + N〉′, (0 � n � N − 1).

Then |n〉 = |n + N〉. We define |n〉− for n ∈ Z by the N-periodic condition: |n + N〉− = |n〉−.
Hence we can identify {|n〉} or {|n〉−} with the canonical basis of the vector space of N-cyclic
vectors, and one has the decomposition of V

V = V+ ⊕ V−, V+ :=
∑

n∈ZN

C|n〉, V− :=
∑

n∈ZN

C|n〉−.

The spin-shift operator |n〉′ �→ |n + 1〉′ of V is decomposed as the sum of X on V+ and X̃ on
V−, where

X|n〉 = |n + 1〉(n ∈ ZN), X̃|n〉− =
{|n + 1〉− n �≡ N − 1 (mod N),

−|n + 1〉− n ≡ N − 1 (mod N).

Together with the operator Z: Z|n〉 = ωn|n〉, Z|n〉− = ωn|n〉−, one finds (X,Z), (X̃, Z)

are Weyl operators of V+ or V− respectively with XN = ZN = 1, X̃N = −1. Under the

6
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cyclic representation σφ,φ′,ε (3.1) of Uq(sl2), the subspaces V+, V− are interchanged under the
generators K

1
2 , e±, with the expression

K
1
2 |n〉 = q−n+ φ′−φ

2 |n〉−, K
1
2 |n〉− = q−n+ φ′−φ

2 |n〉 (0 � n � N − 1),

e+|n〉 = qε qφ+n − q−φ−n

q − q−1
|n − 1〉− (1 � n � N),

e−|n〉 = q−ε qφ′−n − q−φ′+n

q − q−1
|n + 1〉− (−1 � n � N − 2),

e+|n〉− = qε qφ+n − q−φ−n

q − q−1
|n − 1〉,

e−|n〉− = q−ε qφ′−n − q−φ′+n

q − q−1
|n + 1〉 (0 � n � N − 1).

(3.8)

Using the above formulae, one finds that K−1 and K
−1
2 e± are operators of V+ and V−, which

can be expressed by X,Z and X̃, Z respectively such that relation (3.4) (using q) holds for
V+, and also valid for V− when replacing X by X̃. By using the V−-basis, |n〉〉 := qn|n〉−
for 0 � n � N − 1, the Weyl pair (X̃, Z) is converted to (q−1X,Z). One can express the
operators K

−1
2 e± by

K
−1
2 e+|n〉〉 = −q

−φ−φ′
2 +ε (1 − q2φ+2Z−1)X−1

q − q−1
|n〉〉,

K
−1
2 e−|n〉〉 = q

φ+φ′
2 −ε (1 − q−2φ′−2Z−1)X

q − q−1
|n〉〉.

Using the Fourier transform (3.5) of the basis {|n〉} and {|n〉〉}, by the same argument in
subsection 3.1, one can show that −sK

−1
2 L(s) for the L-operator (3.2) is gauge equivalent to

two copies of the same L-operator (2.1) of the τ (2)-model with the parameter given by (3.6)
(replacing q by q). Therefore the transfer matrix (3.3) of the XXZ chain is equivalent to the
sum of two copies of the τ (2)-transfer matrix (2.3). Note that neither one of the two copies of
the τ (2)-model inherits the Uq(sl2) structure of the XXZ chain, in which one copy is sent to
another by (3.8). The symmetry structure of the τ (2)-model related to Uq(sl2) is different from
that in subsection 3.1 for the odd N case. Nevertheless, the τ (2)-model with certain constraints
on the parameter again possesses the sl2-loop-algebra symmetry that arises from the Uq(ŝl2)-
structure of the corresponding XXZ-model. In particular, in the homogeneous superintegrable
case, the Onsager-algebra symmetry of the degenerate τ (2)-eigenspace is extended to the
symmetry of sl2-loop algebra (in certain sectors). The relationship of these two symmetries
will hopefully, though not immediately apparent, lead to a solution of the eigenvector problem
in the superintegrable CPM (for an arbitrary N) along the line in [2, 3].

4. Concluding remarks

By studying the general solution of the YB equation of the six-vertex model, we find a
one-parameter L-operators associated with the quantum group Uq(sl2), which carries a three-
parameter family of cyclic representation when q is a root of unity. We have showed that
the XXZ chain of the Uq(sl2)-cyclic representation with q2N = 1 is equivalent to the sum
of two copies of a N-state τ (2)-model. In particular, the Onsager-algebra symmetry of the
homogeneous superintegrable CPM is enlarged to the sl2-loop-algebra symmetry induced
from the corresponding XXZ-model. When N is odd and q is a primitive Nth root of unity,
the N-state τ (2)-model can also be identified with the XXZ chain of a cyclic representation

7
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of Uq(sl2), hence the quantum space carries the structure of quantum affine algebra Uq(ŝl2).
As a special case, the homogeneous superintegrable τ (2)-model in the CPM is equivalent
to the spin-(N − 1)/2 XXZ chain with the canonical Uq(ŝl2)-structure [28], by which the
sl2-loop-algebra symmetry of the superintegrable τ (2)-model was derived in [23, 27]. In
the recent study of eigenvalues of the chiral Potts model with alternating rapidities [30], the
τ (2)-degeneracy is also found in the alternating superintegrable case. By identifying these
τ (2)-models with the XXZ chains via (3.7), we find the sl2-loop-algebra symmetry for the
degenerate τ (2)-eigenspace in certain cases. Similar to the homogeneous CPM case [24],
some twisted version of the Onsager-algebra symmetry for the τ (2)-model could also possibly
exist in the theory of a general alternating superintegrable chiral Potts model. However, the
explicit nature remains hard to know precisely. The exact relationship and a further symmetry
study of general cases are now under consideration.
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